
Leila Scola & Story DeWeese
June 5, 2020
Final Project Report

Abstract:
Throughout this project, we created the data path as seen in Figure 1: Data Path. To do this, we
first create each of the individual components. We were able to use and modify some of the work
from previous labs as a starting point. Then, we altered that previous code to work for the
specific data path for this project. This first step included finalizing the design for the Mux,
Program Counter, Instruction Memory, PC Buffer, IF/IX Buffer, Control, Register File, Sign
Extend, ALU, ID/EX Buffer, Data Memory and the EX/WB Buffer. Then, we created the
Testbench CPU to utilize all of these components together. We used the output wires from one
component as the input wires on the next according to Figure 1: Data Path. Next, from the
given assembly instructions, we optimized and translated them to binary to test and debug our
final data path.

Detailed description of the CPU design including the datapath:
If we begin at the Program Counter the Mux before it passes an address based on the previous
instruction and this is passed as is. The PC Buffer stalls for one cycle before passing the address
into the IF/ID Buffer to account for the time it takes for the Adder and the Instruction Memory to
function. The Adder increases the address that was just passed by four, and offers it as a select to
the Mux that feeds into the Program Counter to move the code sequentially if the instruction is
not a branch or jump. The Instruction Memory will fetch the actual data stored at the address’
point in memory and pass it to the IF/ID Buffer.

The IF/ID Buffer breaks up the passed memory and address and feeds it into many different
modules. It feeds bits 0-21 of memory into the Sign Extender, bits 10-15 becomes the address for
Rt, bits 16-21 becomes the address for Rs, bits 22-27 becomes the address for Rd, bits 28-31 of
the memory into the Control module, and the address from the PC Buffer is stalled and output as
is.

The Control unit takes its four-bit input and chooses its outputs bits (RegWrt, MemToReg,
PCtoReg, BranchNeg, BranchZero, Jump, JumpMem, MemRead, MemWrt, and ALUOP) based
on that. Based on the instruction, different bits are set to make sure the rest of the modules will
work as expected to complete the instruction appropriately.

The Register File takes the address for Rs and Rt and reads them, outputting what is stored in
memory at that point (the output will be 32 bits in this case). It may also receive Rd as a write
address, decoding the address to write to that point in memory if specified by the Write bit being

high, which is an output from the RegWrt from the Control unit. The Data written comes from
Data Memory.

While this is occurring, the Sign Extend module takes its 22-bit input and turns it into a 32-bit
output by extending the MSB. This is passed to another Adder along with the PC Buffer address.
The Adder combines these two inputs and passes it along to the ID/EX Buffer. This output is an
input to the Mux seen at the right of the Data Path as a potential address to be passed back as the
Data to be written to the Register File.

The ID/EX Buffer takes all the outputs from the Control unit, the Register File, the unused Rd,
and the Sign Extend Adder and buffers them for one cycle. The Data Memory unit receives the
Rs memory as an address, the Rt address as Data coming in, and MemWrt from the Control unit
to choose whether to write to the data coming in to the address specified or not, applied on a
LDUR or STUR instruction. It also receives a MemRead from the Control Unit, to read Data
Memory from the given address. It outputs memory and passes it to the EX/WB Buffer. At this
point, an ALU receives Rs and Rt as inputs and the ALUOP as a select to choose what arithmetic
operation to perform on the two pieces of data. The result of the calculation is also passed to the
EX/WB Buffer, as well as a Negative and a Zero indicator. The EX/WB Buffer stalls for one cycle,
then passes its inputs.

There is an AND gate that takes the Negative and Zero as an input, and an AND gate that takes
the RegWrt and BranchZero Control outputs as inputs. The result of the AND gates feeds into an
OR gate that also takes the Jump bit from the Control unit. The result of the OR operation
becomes a select for the Mux seen before the Program Counter. If asserted, it means that
instructions will not be executed sequentially, but must Branch or Jump to a new location before
returning to sequential execution.

There is a final Mux on the right side of the Data Path that receives the ALU output, Data
Memory output, and the Sign Extend Adder outputs as inputs. It’s selects come from MemToReg
and PCtoReg. This Mux selects whether we are writing to memory or not and its output feeds
into the Register File as “Data.” The Data varies on the instruction given. If the instruction was
an arithmetic operation, the ALU output is chosen, if the instruction was to access Data Memory
(such as a LDUR/STUR) then the Data Memory output is chosen, and if there is an address
passed that needs to be altered.

To wrap back to the beginning, that initial Mux on the left of the Data Path receives inputs of the
Program Counter Adder, the ALU output, and the Data Memory output. Its selects are JumpMem
from the Control unit and the OR gate output. This Mux outputs a value to be taken by the
Program Counter, deciding whether we are branching or executing instructions sequentially.

Figure 1: Data Path

Control Truth Table:

Opcode RegWrt MemT
oReg

PCtoReg Branch
Neg

Branch
Zero

Jump JumpMem MemRe
ad

MemWrt ALUOP

0000 0 0 0 0 0 0 0 0 0 1111

1111 1 0 1 0 0 0 0 0 0 0000

1110 1 1 0 0 0 0 0 1 0 0100

0011 0 0 0 0 0 0 0 0 1 0100

0100 1 0 0 0 0 0 0 0 0 0000

0101 1 0 0 0 0 0 0 0 0 0001

0110 1 0 0 0 0 0 0 0 0 0010

0111 1 0 0 0 0 0 0 0 0 0011

1000 0 0 1 0 0 1 0 0 0 0100

1001 0 0 1 0 1 0 0 0 0 0100

1010 0 0 0 0 0 0 1 0 1 0100

Test benchmarks:

1011 0 0 1 1 0 0 0 0 0 0100

0001 1 1 0 0 0 0 0 1 0 0000

Waveforms verifying the functions:

Appendix:

Code:
Adder
module adder(A1, A2, Result);

// define inputs to adder, including 8-bit input A

input [7:0] A1;

input [7:0] A2;

// define out to be a reg meaning a value can be assigned to it

output reg [7:0] Result;

// the 'always@' means that every time an input changes, run this body of code

again

// (so our and gate reruns whenever we change the inputs!)

always@(A1, A2)

begin

Result = A1 + 1;

end

endmodule

ALU
module alu(A, B, opcode, Result, neg, Z);

// define inputs to ALU, including 32-bit inputs A and B, and 4-bit opcode

input [31:0] A;

input [31:0] B;

input [3:0] opcode;

// define out to be a reg meaning a value can be assigned to it

output reg [31:0] Result;

//define negative and zero busts so value can be assigned to them

output reg neg;

output reg Z;

// the 'always@' means that every time an input changes, run this body of code

again

// (so our and gate reruns whenever we change the inputs!)

always@(A, B, opcode)

begin

//neg is always 1 if the MSB of Result is 1 (0 otherwise)

//Zero is always 1 if the result is all 0's

//if the opcode is 0000, it indicates ADD

if(opcode == 4'b0000)

begin

 //the result should be A+B

Result = A+B;

end

//if the opcode is 0001, it indicates INCREMENT (of A)

if(opcode == 4'b0001)

begin

//The result is A + 1 in the LSB

Result = A+1;

end

//if the opcode is 0010, it indicates NEGATE A

if(opcode == 4'b0010)

begin

//Result is equal to flipping all the bits of A and adding 1, which

creates a 2's complement

Result = (~A)+32'b1;

end

//if the opcode is 0011, it indicates SUBTRACT A and B

if(opcode == 4'b0011)

begin

//to subtract A and B, add the 2's complement of B to A

Result = A + (~B+32'b1);

end

//if the opcode is 0100, it indicates PASS A

if(opcode == 4'b0100)

begin

//Result = A

Result = A;

end

end

always@(Result)

begin

 if (opcode != 4'b0100)

 begin

 // if the result is equal to 0, set the zero flag to 1

 if (Result == 32'd0)

 Z= 1;

 else

 Z= 0;

 // if the most significant bit is 1, set the neg flag to 1

 if (Result[31] == 1)

 neg = 1;

 else

 neg = 0;

 end

end

endmodule

And Gate
module and_gate(d1, d2, out);

// define d1, d2 as inputs

input d1 ,d2;

// define out to be a reg meaning a value can be assigned to it

output reg out;

// the 'always@' means that every time an input changes, run this body of code

again

// (so our and gate reruns whenever we change the inputs!)

always@(d1, d2)

begin

 out = d1 & d2;

end

endmodule

Or Gate
module or_gate(d1, d2, d3, out);

 // define d1, d2 as inputs

 input d1, d2, d3;

 // define out to be a reg meaning a value can be assigned to it

 output reg out;

 // the 'always@' means that every time an input changes, run this body of

code again

 // (so our and gate reruns whenever we change the inputs!)

 always@(d1, d2, d3)

 begin

 out = d1 || d2 || d3;

 end

endmodule

Control
module Control(CLK, Opcode, RegWrt, MemToReg, PCtoReg, BranchNeg, BranchZero,

Jump, JumpMem, ALUOP, MemRead, MemWrt);

// define input as the opcode

input [3:0] Opcode;

input CLK;

// define out to be a reg meaning a value can be assigned to it

//create output registers to be bits to control rest of logic operations based

on opcode

output reg RegWrt, MemToReg, PCtoReg, BranchNeg, BranchZero, Jump, JumpMem,

MemRead, MemWrt;

output reg [3:0] ALUOP;

// the 'always@' means that every time clock hits a positive edge, run this

body of code again

always@(negedge CLK)

begin

//no operation

if(Opcode == 4'b0000)

begin

RegWrt = 0;

MemToReg = 0;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b1111;

end

//load PC ---> LDPC rd, X ---> $rd = PC + X

else if(Opcode == 4'b1111)

begin

RegWrt = 1;

MemToReg = 0;

PCtoReg = 1;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b0000;

end

//load ---> LD rd, rs ---> $rd = M[$rs]

else if(Opcode == 4'b1110)

begin

RegWrt = 1;

MemToReg = 1;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 1;

MemWrt = 0;

ALUOP = 4'b0100;

end

//store ---> ST rt, rs ---> M[$rs] <= $rt

else if(Opcode == 4'b0011)

begin

RegWrt = 0;

MemToReg = 0;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 1;

ALUOP = 4'b0100;

end

//add ---> ADD rd, rs, rt ---> $rd <= $rs + $rt

else if(Opcode == 4'b0100)

begin

RegWrt = 1;

MemToReg = 0;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b0000;

end

//increment ---> INC rd, rs ---> $rd <= $rs + 1

else if(Opcode == 4'b0101)

begin

RegWrt = 1;

MemToReg = 0;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b0001;

end

//negate ---> NEG rd, rs ---> $rd <= -$rs

else if(Opcode == 4'b0110)

begin

RegWrt = 1;

MemToReg = 0;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b0010;

end

//subtract ---> SUB rd, rs, rt ---> $rd <= $rs - $rt

else if(Opcode == 4'b0111)

begin

RegWrt = 1;

MemToReg = 0;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b0011;

end

//jump ---> J rs ---> PC <= $rs

else if(Opcode == 4'b1000)

begin

RegWrt = 0;

MemToReg = 0;

PCtoReg = 1;

BranchNeg = 0;

BranchZero = 0;

Jump = 1;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b0100;

end

//Branch if Zero ---> BRZ rs ---> PC <= $rs

else if(Opcode == 4'b1001)

begin

RegWrt = 0;

MemToReg = 0;

PCtoReg = 1;

BranchNeg = 0;

BranchZero = 1;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b0100;

end

//jump memory ---> JM rs ---> PC <= M[$rs]

else if(Opcode == 4'b1010)

begin

RegWrt = 0;

MemToReg = 0;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 1;

MemRead = 0;

MemWrt = 1;

ALUOP = 4'b0100;

end

//branch if negative ---> BRN rs ---> PC <= $rs

else if(Opcode == 4'b1011)

begin

RegWrt = 0;

MemToReg = 0;

PCtoReg = 1;

BranchNeg = 1;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 0;

MemWrt = 0;

ALUOP = 4'b0100;

end

//Sum ---> SUM rd, rs, rt ---> $rd = ($rs+$rt) memory [i]

else if(Opcode == 4'b0001)

begin

RegWrt = 1;

MemToReg = 1;

PCtoReg = 0;

BranchNeg = 0;

BranchZero = 0;

Jump = 0;

JumpMem = 0;

MemRead = 1;

MemWrt = 0;

ALUOP = 4'b0000;

end

end

endmodule

Data Memory
module DataMem(CLK, read, write, Addr, data_in, data_out);

// define inputs to Data Memory, including Clock, read and write signals, the

Address, and data-in

input CLK;

input read, write;

input [31:0] Addr, data_in;

// define out to be a reg meaning a value can be assigned to it

output reg [31:0] data_out;

//create array of 65536 elements with 32 bits each

reg [31:0] data [65535:0];

// the 'always@' means that every time clock hits a positive edge, run this

body of code again

always@(negedge CLK)

begin

//if read bit is high, set the data out to data in the address location

from the test bench

if (read == 1)

data_out = data[Addr[15:0]]; //use first 16 bits so we don't

crash Vivado

//if write bit is high, write to the data address from test bench the

data in given

if (write == 1)

data[Addr[15:0]] = data_in;

//data[256] = 256;

end

endmodule

IF/ID Buffer

module IFID(CLK, InstrMem, PCBuff, control_in, rs, rt, rd, SignExtendIn,

PCBuffOut); // control_in = instruction_out[38:24],

// define inputs to IF/ID Buffer, including Clock, Instruction Memory, and PC

Buffer

input [31:0] InstrMem;

input [7:0] PCBuff;

input CLK;

// define out to be a reg meaning a value can be assigned to it

//create output registers as reciprocals of inputs

output reg [3:0] control_in;

output reg [5:0] rs, rt, rd;

output reg [21:0] SignExtendIn;

output reg [7:0] PCBuffOut;

// the 'always@' means that every time clock hits a positive edge, run this

body of code again

always@(posedge CLK)

begin

//set outputs equal to inputs at next clock cycle

control_in = InstrMem [31:28];

rt = InstrMem[15:10];

rs = InstrMem[21:16];

rd = InstrMem[27:22];

SignExtendIn = InstrMem[21:0];

PCBuffOut = PCBuff;

end

endmodule

ID/EX Buffer
module IDEX(CLK, RegWrtIn, MemtoRegIn, PCtoRegIn, BranchNeg, BranchZero, Jump,

JumpMem, ALUOpIn, MemRead, MemWrite, rs, rt, rd, addALUout, RegWrtOut,

MemtoRegOut, PCtoRegOut, BranchNegOut, BranchZeroOut, JumpOut, JumpMemOut,

Read, Write, ALUOpOut, rsout, rtout, rdout, addALUout2);

// define inputs to IDEX Buffer, including Clock, Writes, Reads, and Data

Inputs

input CLK, RegWrtIn, MemtoRegIn, PCtoRegIn, BranchNeg, BranchZero, Jump,

JumpMem, MemRead, MemWrite;

input [3:0] ALUOpIn;

input [31:0] rs, rt;

input [5:0] rd;

input [31:0] addALUout;

// define out to be a reg meaning a value can be assigned to it

//create output registers as reciprocals of inputs

output reg RegWrtOut, MemtoRegOut, PCtoRegOut, BranchNegOut, BranchZeroOut,

JumpOut, JumpMemOut, Read, Write;

output reg [3:0] ALUOpOut;

output reg [31:0] rsout, rtout;

output reg [5:0] rdout;

output reg [31:0] addALUout2;

// the 'always@' means that every time clock hits a positive edge, run this

body of code again

always@(posedge CLK)

begin

//set outputs equal to inputs at next clock cycle

RegWrtOut = RegWrtIn;

MemtoRegOut = MemtoRegIn;

PCtoRegOut = PCtoRegIn;

BranchNegOut = BranchNeg;

BranchZeroOut = BranchZero;

JumpOut = Jump;

JumpMemOut = JumpMem;

ALUOpOut = ALUOpIn;

Read = MemRead;

Write = MemWrite;

rsout = rs;

rtout = rt;

rdout = rd;

addALUout2 = addALUout;

end

endmodule

EX/WB Buffer
module EXWB(CLK, Nin, Zin, RegWrtIn, MemtoRegIn, PCtoRegIn, BranchNeg,

BranchZero, Jump, JumpMem, REGin, DataMemIn, WrtAddrIn, ALUin, Nout, Zout,

RegWrtOut, MemtoRegOut, PCtoRegOut, BranchNegOut, BranchZeroOut, JumpOut,

JumpMemOut, REGout, DataMemOut, WrtAddrOut, ALUout);

// define inputs to EXWB, including Clock, Flags, Writes, Data coming in, etc.

input CLK, Nin, Zin, RegWrtIn, MemtoRegIn, PCtoRegIn, BranchNeg, BranchZero,

Jump, JumpMem;

input [5:0] WrtAddrIn;

input [31:0] DataMemIn, ALUin, REGin;

// define out to be a reg meaning a value can be assigned to it

//create output branches as reciprocals of inputs

output reg Nout, Zout, RegWrtOut, MemtoRegOut, PCtoRegOut, BranchNegOut,

BranchZeroOut, JumpOut, JumpMemOut;

output reg [5:0] WrtAddrOut;

output reg [31:0] DataMemOut, ALUout, REGout;

// the 'always@' means that every time clock hits a positive edge, run this

body of code again

always@(posedge CLK)

begin

//set outputs equal to the inputs at the next clock cycle

Nout = Nin;

Zout = Zin;

RegWrtOut = RegWrtIn;

MemtoRegOut = MemtoRegIn;

PCtoRegOut = PCtoRegIn;

BranchNegOut = BranchNeg;

BranchZeroOut = BranchZero;

JumpOut = Jump;

JumpMemOut = JumpMem;

REGout = REGin;

DataMemOut = DataMemIn;

WrtAddrOut = WrtAddrIn;

ALUout = ALUin;

end

Instruction Memory
module InstrMem(CLK, InstrAddr, Instruction);

// define inputs to Instruction Memory, including 8-bit input address and Clock

(CLK)

input [7:0] InstrAddr;

input CLK;

// define out to be a reg meaning a value can be assigned to it, it will be the

output instruction

output reg [31:0] Instruction;

//256x32 bits instruction memory array

reg [31:0] data [511:0]; // increased from 256 to 512

// hard-code in the machine code (binary) for the instructions that are given

in the demo

// each element represents a single instruction in this format: 4-bit opcode,

6-bit rd, 6-bit rs, 6-bit rt, 10-bit unused

//to assign bits to data to monitor functionality

initial begin

 // LDPC $r1, 0xFF (diff than lab handout, which will be updated shortly!)

note there are no rs & rd values needed for the Load PC instruction. The last

value is 255 in binary

 data [0] = {4'b1111, 6'b000001, 6'b000000, 6'b000000, 10'b0100000000}; //

start at 256!

 // LDPC $r10, 8 //rs & rd are don't cares. unused = 8

 data [1] = {4'b1111, 6'b001010, 6'b000000, 6'b000000, 10'b0000001010}; //

move up to second instruction to reduce the no-ops needed

 // 1 no-op should go here

 data [2] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 // INC $r2, $r1 // rd = 2, rs = 1, rt is a don't care

 data [3] = {4'b0101, 6'b000010, 6'b000001, 6'b000000, 10'b0000000000};

 // NEG $r3, $r1 // rd = 3, rs = 1, rt is a don't care

 data [4] = {4'b0110, 6'b000011, 6'b000001, 6'b000000, 10'b0000000000};

 // BRN $r10 // rs = 10, rd & rt are don't cares

 data [5] = {4'b1011, 6'b000000, 6'b001010, 6'b000000, 10'b0000000000};

 // 3 no-ops should go here

 data [6] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [7] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [8] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 // INC $r2, $r2 // rd = 2, rs = 2, rt is a don't care

 data [9] = {4'b0101, 6'b000010, 6'b000010, 6'b000000, 10'b0000000000};

 // ST $r1, $r1 // rt & rs = 1, rd is a don't care

 data [10] = {4'b0011, 6'b000000, 6'b000001, 6'b000001, 10'b0000000000};

 // 2 no-ops should go here

 data [11] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [12] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 // LD $r4, $r1 // rd = 4, rs = 1, rt is a don't care

 data [13] = {4'b1110, 6'b000100, 6'b000001, 6'b000000, 10'b0000000000};

 // ADD $r5, $r1, $r2 // rd = 5, rs = 1, rt = 2

 data [14] = {4'b0100, 6'b000101, 6'b000001, 6'b000010, 10'b0000000000};

 // 1 no-op should go here

 data [15] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 // SUB $r6, $r4, $r1 // rd = 6, rs = 4, rt = 1

 data [16] = {4'b0111, 6'b000110, 6'b000100, 6'b000001, 10'b0000000000};

 // LDPC $r11, 5 //rs & rd are don't cares. unused = 5

 data [17] = {4'b1111, 6'b001011, 6'b000000, 6'b000000, 10'b0000001001};

 // 2 no-ops should go here

 data [18] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [19] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 // BRZ $r11 // rs = 11, rd & rt are don't cares

 data [20] = {4'b1001, 6'b000000, 6'b001011, 6'b000000, 10'b0000000000};

 // 3 no-ops should go here

 data [21] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [22] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [23] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 // INC $r2, $r2 // rd = 2, rs = 2, rt is a don't care

 data [24] = {4'b0101, 6'b000010, 6'b000010, 6'b000000, 10'b0000000000};

 // JM $r1 // rs = 1, rd & rt are don't cares

 data [25] = {4'b1010, 6'b000000, 6'b000001, 6'b000000, 10'b0000000000};

 // 3 no-ops should go here

 data [26] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [27] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [28] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 // J $r1 // rs = 256, rd & rt are don't cares

 data [29] = {4'b0000, 6'b000000, 6'b000001, 6'b000000, 10'b0100000000};

 // 3 no-ops should go here

 data [30] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [31] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

 data [32] = {4'b0000, 6'b000000, 6'b000000, 6'b000000, 10'b0000000000};

end

// the 'always@' means that every time input changes, run this body of code

again

//whenever the CLK hits a positive edge, this code repeats/begins

always@(negedge CLK)

begin

//set the output instruction to the location in data memory of the

address given

Instruction = data[InstrAddr];

end

endmodule

Mux
module mux(d1, d2, d3, select1, out); // this select will take 2 1-bit inputs

(when testing, you can use this syntax: {sel1, sel2) to concatenate these into

1 input!

 // inputs declared

 input [31:0] d1, d2, d3; // different than the mux made in Lab 1, this mux

needs to be promoted to 32 bits

 input [1:0] select1;

 // output declared

 output reg [31:0] out;

 always@(d1, d2, d3, select1)

 begin

 // for select = 00, the output should be d1

 if(select1 == 2'b00)

 out = d1;

 // for select = 01, the output should be d2

 if(select1 == 2'b01)

 out = d2;

 // for select = 10, the output should be d3

 if(select1 == 2'b10)

 out = d3;

 end

endmodule

Program Counter
module program_counter(clk, pc_in, pc_out); // you only need 8 bits for this!

 // inputs declared

 input [7:0] pc_in;

 input clk;

 // outputs declared

 output reg [7:0] pc_out;

 initial begin

 pc_out = 0;

 end

 always@(negedge clk)
 begin

 if(pc_in) // ensure that the input is a valid value before setting the

output equal to it

 begin

 pc_out = pc_in;

 end

 end

endmodule

PC Buffer
module pc_buffer(CLK, pc_in, pc_out);

 // inputs declared

 input CLK;

 input [7:0] pc_in;

 // outputs declared

 output reg [7:0] pc_out;

 always@(negedge CLK)

 begin

 pc_out = pc_in;

 end

endmodule

Register File
module RegFile(CLK, write, Rd, Rs, Rt, data_in, rsout, rtout);

// define inputs to Register File, including Clock, write bit, Input Registers

-- Rs, Rd, Rt --, and Data-In

input CLK;

input write;

input [5:0] Rd, Rs, Rt;

input [31:0] data_in;

// define outputs to be a reg meaning a value can be assigned to it

output reg [31:0] rsout;

output reg [31:0] rtout;

//64 x 32 array (64 elements, 32 bits each)

reg [31:0] data [63:0];

// the 'always@' means that every time clock changes, run this body of code

again

//at the clock's positive edge, this code will begin

always@(negedge CLK)

begin

//if write is high, set data at the output destination to data in

if(write == 1)

data[Rd] = data_in;

//set the Rs register to the location in data memory of Rs

rsout = data[Rs];

//set the Rt register to the location in data memory of Rt

rtout = data[Rt];

end

endmodule

Sign Extend
module SignExtend(SignIn, SignOut);

// define input to be incoming data.

input [21:0] SignIn;

// define out to be a reg meaning a value can be assigned to it

//create output as sign extension of input

output reg [31:0] SignOut;

// the 'always@' means that every time clock hits a positive edge, run this

body of code again

always@(SignIn)

begin

//set outputs equal to the inputs at the next clock cycle

if(SignIn[21] == 1)

SignOut = {10'b1111111111, SignIn};

else

SignOut = {10'b0000000000, SignIn};

end

endmodule

CPU Testbench
module CPU();

// regs can store data

//create registers for clock input

reg clk;

//create wires for MUX1

wire [7:0] Adder1Out;

//create wire to output for MUX1/input PC

wire [31:0] pc_in;

//create wires for PC

wire [7:0] pc_out; //adder1in, pcbuff_in, instrmem_in

//create wires for PC Buffer

wire [7:0] pcbuff_out;

//create wires for Instruction Memory

wire [31:0] InstrMemVal;

//create wire to output for IFID

//wire [31:0] InstrMemValOut;

wire [3:0] Control_in;

wire [5:0] rs, rt, rd;

wire [21:0] SignExtendIn;

wire [7:0] Adder2In;

//create wire to output for Control

wire RegWrt, MemToReg, PCtoReg, BranchNeg, BranchZero, Jump, JumpMem, MemRead,

MemWrt;

wire [3:0] ALUOp;

//create wire to output for Register File

wire [31:0] Data1, Data2;

//create wire to output for Sign Exend

wire [31:0] SignExtended;

//create wire for SignExtendAdder

wire [31:0] SignExtendAdderOut;

//create wire for IDEX

wire RegWrtIE, MemToRegIE, PCtoRegIE, BranchNegIE, BranchZeroIE, JumpIE,

JumpMemIE, MemReadIE, MemWrtIE;

wire [3:0] ALUOpIE;

wire [31:0] Data1IE, Data2IE, SignExtendedIE;

wire [5:0] rdIE;

//create wire for ALU

wire N, Z;

wire [31:0] ALUResult;

//wire for Data Memory

wire [31:0] DataMemOut;

//wire for EXWB

wire Nout, Zout, RegWrtEW, MemToRegEW, PCtoRegEW, BranchNegEW, BranchZeroEW,

JumpEW, JumpMemEW;

wire [31:0] ALUResultEW, DataMemEW, SignExtendedEW;

wire [5:0] rdEW;

//wire for BranchNeg and Neg AND gate

wire andNeg;

//wire for BranchZero and Zero AND gate

wire andZero;

//wire for AND gates and JUMP OR gate

wire or_out;

//wire for final mux

wire [31:0] RegDataIn;

mux test0({24'b0, Adder1Out}, ALUResultEW, DataMemEW, {JumpMemEW, or_out},

pc_in); // first mux

program_counter test(clk, pc_in[7:0], pc_out);

adder test1(pc_out, 1, Adder1Out);

pc_buffer test2(clk, pc_out, pcbuff_out);

InstrMem test3(clk, pc_out, InstrMemVal);

IFID test4(clk, InstrMemVal, pcbuff_out, Control_in, rs, rt, rd, SignExtendIn,

Adder2In);

Control test5(clk, Control_in, RegWrt, MemToReg, PCtoReg, BranchNeg,

BranchZero, Jump, JumpMem, ALUOp, MemRead, MemWrt);

RegFile test6(clk, RegWrtEW, rdEW, rs, rt, RegDataIn, Data1, Data2);

SignExtend test7(SignExtendIn, SignExtended);

alu test8(SignExtended, Adder2In, 4'b00, SignExtendAdderOut, ,);

IDEX test9 (clk, RegWrt, MemToReg, PCtoReg, BranchNeg, BranchZero, Jump,

JumpMem, ALUOp, MemRead, MemWrt, Data1, Data2, rd, SignExtended, RegWrtIE,

MemToRegIE, PCtoRegIE, BranchNegIE, BranchZeroIE, JumpIE, JumpMemIE, MemReadIE,

MemWrtIE, ALUOpIE, Data1IE, Data2IE, rdIE, SignExtendedIE);

alu test10(Data1IE, Data2IE, ALUOpIE, ALUResult, N, Z);

DataMem test11(clk, MemReadIE, MemWrtIE, Data1IE, Data2IE, DataMemOut);

EXWB test12 (clk, N, Z, RegWrtIE, MemToRegIE, PCtoRegIE, BranchNegIE,

BranchZeroIE, JumpIE, JumpMemIE, SignExtendedIE, DataMemOut, rdIE, ALUResult,

Nout, Zout, RegWrtEW, MemToRegEW, PCtoRegEW, BranchNegEW, BranchZeroEW, JumpEW,

JumpMemEW, SignExtendedEW, DataMemEW, rdEW, ALUResultEW);

and_gate test13(Nout, BranchNegEW, andNeg);

and_gate test14(Zout, BranchZeroEW, andZero);

or_gate test15(andNeg, andZero, JumpEW, or_out);

mux test16(ALUResultEW, DataMemEW, SignExtendedEW, {PCtoRegEW, MemToRegEW},

RegDataIn);

//set the clock to create a square wave

initial begin

clk = 0;

//forever, every 5 ns, clock switches from high to low

forever #5 clk = ~clk;

end

// 'initial' means just to do it once (unlike 'always')

initial

begin

#2000;//wait 2000 ns to execute

 $finish;

end

endmodule
The assembly code was provided by the TA. It was then optimized and translated into binary for
the purpose of inputs for this lab:

LDPC $r1,0x100 # r1 = 0x100

LDPC $r10, 10 #please replace ‘label1’ with a number # moved up to act as NO OP
NO OP

INC $r2,$r1 # r2 = 0x101

NEG $r3,$r1# r3 = 0xFFFF_FF00

BRN $r10 # jump to ‘label1’

NO OP # 3 needed after Branch

NO OP

NO OP

INC $r2,$r2 # r2 = r2+1 should NOT be executed.

10:
ST $r1,$r1 # mem[0x100] = 0x100

NO OP

NO OP

LD $r4, $r1 # r4 = 0x100

ADD $r5, $r1, $r2 # r5 = 0x201 # act as NO OP for r4

NO OP

SUB $r6, $r4, $r1 # r6 = 0x0

LDPC $r11, 9 #please replace ‘label2’ with a number
NO OP

NO OP

BRZ $r11 # jump to ‘label2’

NO OP # 3 needed after Branch

NO OP

NO OP

INC $r2, $r2 # r2 = r2+1 should NOT be executed.

9:
JM $r1 # jump to 0x100

NO OP # 3 needed after Jump

NO OP

NO OP

0x100:

J $r1 #Please put this instruction at IM address 0x100; endless loop to

0x100

NO OP # 3 needed after Jump

NO OP

NO OP

